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An Adaptive Inpainting Algorithm Based on DCT
Induced Wavelet Regularization

Yan-Ran Li1, Lixin Shen2, and Bruce W. Suter3

Abstract—In this work, we propose an image inpainting opti-
mization model whose objective functional is a smoothed ℓ1 norm
of the weighted non-decimated discrete cosine transform (DCT)
coefficients of the underlying image. By identifying the objective
function of the proposed model as a sum of a differentiable
term and a non-differentiable term, we give a basic algorithm
inspired by Beck and Teboulle’s recent work [1] for the proposed
model. Based on this basic algorithm, we propose an automatic
way to determine the weights involved in the model and update
them at each iteration. The discrete cosine transform as an
orthogonal transform is used in various applications. We view
the rows of a discrete cosine transform matrix as the filters
associated with a multiresolution analysis. Non-decimated wavelet
transforms with these filters are explored to analyze images to
be inpainted. Our numerical experiments verify that under the
proposed framework, the filters from a discrete cosine transform
matrix demonstrate promise for the task of image inpainting.

Index Terms—Discrete Cosine Transform, Framelet, Moreau
envelope, Inpainting, ℓ1 minimization.

I. INTRODUCTION

In many applications, only partial data are available in
an image due to a variety of reasons including impulsive
noise caused by malfunctioning pixels in camera sensors,
faulty memory locations in hardware, or transmission in a
noisy channel, text or signature superposed on an image,
and a scratch in a picture [2], [3]. Recovery of missing
pixels is called image inpainting, an active area of research
in image processing. Applications of image inpainting include
old films restoration, video inpainting [4], de-interlacing of
video sequences [5], and cloud removal from remotely sensed
images [6]. Restoring missing pixels becomes indispensable
in the above applications.

Many successful algorithms for image inpainting have been
developed in the past decade. These inpainting algorithms
can be roughly classified into three groups: geometric partial
differential equation (PDE), patch, and sparse representation
based ones. Classical, yet popular, methods for image inpaint-
ing use PDEs and variational formulations to propagate avail-
able image information from observed domains into missing
regions as a way of smoothly transporting the contours of
the image into the regions being inpainted [3], [7], [8], [9],
[10], [11], [12]. Within the category of PDE-based methods,
there are a number of approaches which perform well for
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piecewise smooth images with sharp edges. Patch-based (or
exemplar-based) inpainting methods fill in missing pixels of
an image from known non-local observed data by exploring
local repetitions of local information. Recent work in this
direction includes [13], [14], [15], [16], [17] and the references
therein. Algorithms in this category propagate the known
patches into missing patches gradually in a fashion of cut-
and-paste, and perform well, especially for missing regions
with texture and large sizes. Sparse representation for image
inpainting was recently addressed in [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], and the references
therein. The idea of these algorithms is to sparsely represent
an image by a redundant system which is formed by a set
of transforms such as the discrete cosine transform, wavelets,
framelets, and curvelets. The missing pixels are then inferred
by shrinking coefficients adaptively and iteratively from this
sparse representation.

In this paper, we propose an inpainting method which could
be viewed as a sort of combination of a variational approach
and a sparse representation based approach. The proposed
inpainting method is developed based upon an optimization
model whose objective functional is a smoothed ℓ1 norm of the
coefficients of the underlying image under a given redundant
system. The redundant system is generated from the discrete
cosine transform (DCT) matrix of second type [29]. More
precisely, we identify the rows of a given DCT matrix as
the filters associated with a multiresolution analysis which is
referred to as the DCT-Haar wavelet system in the following
discussion. The non-decimated transform using the DCT-Haar
wavelet filters yields a redundant system that is used in our
model. We show that this redundant system incorporated with
the proposed model performs particularly well for inpainting
images with incomplete information. We propose an adaptive
inpainting algorithm to solve the proposed model. We also
propose a way to automatically tune the parameters appearing
in the algorithm.

The remainder of this paper is organized as follows. In
Section II, we begin with reviewing several variational inpaint-
ing models based on sparse representations. We then propose
our model for inpainting which is regularized by DCT-Haar
wavelets. In Section III, we develop an adaptive iterative algo-
rithm for solving the proposed model. Numerical experiments
for the proposed algorithm are presented in Section IV. Our
conclusions are drawn in Section V.
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II. AN INPAINTING MODEL REGULARIZED BY DCT-HAAR
WAVELETS

Our inpainting model in this paper is formulated as an opti-
mization problem in which the variational objective functional
has a regularization term formed by a sparse representation of
the underlying image. We point out that the proposed optimiza-
tion model is connected with the reweighted ℓ1 minimization
model [30], but with several distinct and promising properties.

We begin with introducing some notation used in the fol-
lowing. Let the original image forg be defined on the domain
Ω = {1, 2, . . . , n} and the nonempty proper subset D of Ω be
given. The observed image g is modeled as

g[k] =

{
forg[k], k ∈ Ω \ D;
h[k], k ∈ D, (1)

where h[k] with k ∈ D could represent any types of degrada-
tions to the original image including impulsive noise and texts
superposed on forg .

Associated with the sets Ω and D, we define an n × n
diagonal matrix, denoted by PD, whose k-th diagonal entry is
1 if k ∈ Ω \ D and 0 if k ∈ D. The goal of image inpainting
is to seek an image f such that PDf = PDg while f can
truthfully retain original information of forg .

Prior to introducing our variational model for image in-
painting, we review some sparse representation based image
inpainting models which are most related to ours.

A. A Brief Review of Three Inpainting Models

The first example among these models is the morphological
component analysis based simultaneous cartoon and texture
image inpainting [18]. The minimization task in [18] is

{f⋆c , f⋆t } = argmin
fc,ft

{
1

2
∥PD(g − fc − ft)∥22 + λ∥Wcfc∥1

+ λ∥Wtft∥1 + γ∥fc∥TV

}
, (2)

where λ and γ are regularization parameters, Wc is a redun-
dant system leading to sparse representations for cartoon-like
images, Wt is a redundant system able to represent texture-
like images sparsely, and ∥ · ∥TV is the total variation. The
image f⋆c + f⋆t will be the inpainted outcome. A work similar
to the one in [18] was also formulated in [22].

The second example is from [31], [20], [23] using tight
framelets. The corresponding minimization task is

x⋆ = argmin
x

{
1

2
∥PD(g −W⊤x)∥22

+
1

2
∥(Id−WW⊤)x)∥22 + ∥Γx∥1

}
, (3)

where W is a tight framelet system with W⊤W = Id and Γ
is a diagonal matrix with non-negative diagonal components.
The inpainted image reads as PDg + (Id − PD)W

⊤x⋆. The
numerical experiments in [31], [20], [23] showed that model
(3) is particularly suitable for cartoon-like images.

The third example from [28] is an extension of the first two
examples for tackling images having both cartoon and texture

contents. The proposed model is

{x⋆c , x⋆t } = argmin
xc,xt

1

2
∥PD(g −

∑
k∈{c,t}

W⊤
k xk)∥22

+
1

2

∑
k∈{c,t}

∥(Id−WkW
⊤
k )xk)∥22 +

∑
k∈{c,t}

∥Γkxk∥1

 , (4)

where Wc and Wt are framelet systems favoring cartoon
and texture contents of images, respectively, Γc and Γt are
diagonal matrices with non-negative diagonal components.
The inpainted image resulting from model (4) is PDg+(Id−
PD)(W

⊤
c x

⋆
c +W⊤

t x
⋆
t ).

The success of models (2) and (4) fully relies on the
selection of appropriate redundant systems Wc and Wt. The
rationale of choosing desirable Wc and Wt is that Wc should
yield sparse representations for the cartoon parts of the un-
derlying image while Wt should yield sparse representations
for the texture parts of the image. However, two issues arise
from using models (2) and (4). The first issue is that there is a
lack of precise mathematical definitions of cartoon and texture
components of an image. This leads to a difficulty in separating
an image exactly into its cartoon part and texture part. Hence,
it affects the choice of appropriate systems Wc and Wt. The
second issue is that the regularization parameter λ in (2) and
the diagonal matrices Γc and Γt in (4) are essential, but should
be pre-determined. An automatic way of determining λ, Γc

and Γt is not available yet. Both issues need to be addressed
if models (2) and (4) are adopted for image inpainting.

Instead of directly addressing the aforementioned two is-
sues, we take a different point of view about image inpainting.
As usual, we infer each missing pixel on D using the known
information from its neighborhood. Our approach is to choose
a redundant system associated with a multiresolution analysis
such that the filters from the multiresolution analysis has the
ability to extract information from neighborhoods of pixels
with different sizes. The candidates of redundant systems
are associated with multiresolution analysis generated from
the DCTs that will be presented in detail in the following
subsection.

B. DCT-Haar Multiresolution Analysis

Discrete cosine transforms are frequently used orthogo-
nal transforms in applied mathematics and engineering [29].
Among various types of the DCTs, the DCT-II is the most
popular one of all and will be chosen below in our discussion.

The standard m×m DCT-II matrix C is given by

C :=
1√
m

[
ϵk cos

(k − 1)(2j − 1)π

2m
: k, j = 1, 2, . . . ,m

]
,

where ϵ1 = 1 and ϵk =
√
2 for k = 2, 3, . . . ,m. The matrix

C is orthogonal, i.e., C⊤C = I . Denoting by ck the k-th row
of 1√

m
C, we can directly verify that the sum of entries of ck

is 1 for k = 1 and zero for k = 2, 3, . . . ,m. Hence, the vector
c1 can be viewed as a low-pass filter while the others can be
viewed as high-pass filters. In particular, when m = 2, c1 and
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c2 are low-pass and high-pass filters corresponding to the well-
known Haar multiresolution analysis. Indeed, c1 and ck, k =
2, 3, . . . ,m, from a general m×m DCT-II matrix, are low-pass
and high-pass filters associated with a multiresolution analysis
of dilation m, which is called the DCT-Haar multiresolution
analysis in the following discussion.

We denote by Pk the matrix representation of the filters
ck, k = 1, 2, . . . ,m, under a proper boundary condition. For
a simple exposition, we illustrate the construction of the Pk

under the periodic condition. In this scenario, the matrix Pk

of size ℓ× ℓ is a circulant matrix with
[
ck 01×(ℓ−m)

]
as its

first row and is written as follows:

Pk = circulant
([
ck 01×(ℓ−m)

])
. (5)

Proposition 1: Let C be the m×m DCT-II matrix and ck
be the k-th row of 1√

m
C. For the matrices Pk defined by (5),

we have that
m∑

k=1

P⊤
k Pk = Id.

Proof: Let us denote by pk the first column of the matrix
Pk, for k = 1, 2, . . . ,m. From the orthogonality of C, we have
that

m∑
k=1

p2k[β] =

{
1
m , if β = 1 or β > ℓ−m+ 1;
0, otherwise. (6)

m∑
k=1

pk[β]pk[τ ] = 0 for all 1 ≤ β < τ ≤ ℓ. (7)

Let U be the ℓ × ℓ Fourier transform matrix, i.e., U :=
1√
ℓ
[exp(− 2π(α−1)(β−1)i

ℓ ) : α, β = 1, 2, . . . , ℓ]. Since any
circulant matrix can be diagonalized by the Fourier transform
matrix, we have that

m∑
k=1

P⊤
k Pk = ℓU∗

(
m∑

k=1

diag(U∗pk)diag(Upk)

)
U.

By the equation U∗U = Id, we just need to show∑m
k=1 diag(U

∗pk)diag(Upk) = 1
ℓ Id. It suffices to prove

that
∑m

k=1 |(U∗pk)[α]|2 = 1
ℓ for each α ∈ {1, 2, . . . , ℓ}.

Let us denote by uα the αth column of U . Note that
|(U∗pk)[α]|2 = p⊤k uαu

∗
αpk =

∑ℓ
β=1 |uα[β]|2p2k[β] +

2
∑

1≤β<τ≤ℓ Re(uα[β]u
∗
α[τ ])pk[β]pk[τ ]. Summing this equa-

tion for k from 1 to m, interchanging the order of the
summations

∑m
k=1 with

∑ℓ
β=1 and

∑
1≤β<τ≤ℓ, and using

equations (6)-(7) together with the fact of |uα[β]| = 1√
ℓ

for all
α and β, we get that

∑m
k=1 |(U∗pk)[α]|2 = 1

ℓ . This completes
the proof.

For a given one-dimensional vector x ∈ Rℓ, a vector of
Pkx is the non-decimated DCT-Haar wavelet coefficients of
x produced by the filter ck. From the coefficients Pkx, k =
1, 2, . . . ,m, the vector x can be perfectly reconstructed from
Pkx due to Proposition 1.

The two dimensional DCT-Haar multiresolution analysis,
constructed by the one dimensional DCT-Haar multiresolution
analysis through the tensor product technique, will be used
to represent images. The matrices Q1 := P1 ⊗ P1 and
Q(i−1)m+j = Pi ⊗ Pj with i, j = 1, 2, . . . ,m and (i, j) ̸=
(1, 1) are, respectively, the low-pass and high-pass filters

associated with the two dimensional DCT-Haar multiresolution
analysis. Here, the symbol ⊗ denotes matrix tensor product.
For an ℓ× ℓ image x, we can view it as a vector (denoted it
by x again) in Rn with n = ℓ2 by concatenating its columns.
The vectors Qkx, k = 1, 2, . . . ,m2, are the non-decimated
DCT-Haar wavelet coefficients of x and satisfy the perfect
reconstruction formula, i.e., x =

∑m2

k=1Q
⊤
k Qkx.

With these matrices Qk, we form a matrix W of the size
of m2n× n as follows

W := [Q⊤
1 , Q

⊤
2 , . . . , Q

⊤
m2 ]⊤. (8)

By Proposition 1, we have the perfect reconstruction condition
for the matrices Qk, that is, W⊤W = Id. Therefore, W is a
tight framelet transform matrix.

C. The Proposed Inpainting Model

The proposed inpainting model with a redundant system W
generated from the DCT is as follows:

min
f,d

{
1

2
∥Wf − d∥22 + ∥Γd∥1 : PDf = PDg

}
, (9)

where Γ is a diagonal matrix with non-negative diagonal
components and d is an auxiliary vector.

Let us explain model (9) in detail. The requirement PDf =
PDg says that the solution to be found should interpolate the
observed data g exactly on the set Ω ⊂ D, in other words, the
solution of model (9) is in the set

C := {f : f ∈ Rn and PDf = PDg}, (10)

which is convex. In the set C, the solution f to be sought is
sparse in the sense that its transformed coefficients Wf are
close to a sparse vector d with respect to the weight matrix Γ.

Model (9) can be written into a compact and unconstrained
form by using the notion of an indicator function and the
Moreau envelope in convex analysis. The indicator function
ιC on the convex set C is defined as

ιC(f) :=

{
0, if f ∈ C;
+∞, otherwise.

Then, the objective functional in model (9) becomes

min
f,d

{
1

2
∥Wf − d∥22 + ∥Γd∥1 + ιC(f)

}
.

Next, for a proper convex function φ defined on Rm2n, that is,
φ : Rm2n → R∪{+∞}, having a non-empty domain (the set
on which φ is finite), the Moreau envelope [32] of φ, denoted
by envφ, is a function from Rm2n to R, defined for a given
u ∈ Rm2n by

envφ(u) := min
v

{
1

2
∥u− v∥22 + φ(v)

}
.

Notice that

min
f,d

{
1

2
∥Wf − d∥22 + ∥Γd∥1 + ιC(f)

}
= min

f

{
min
d

{
1

2
∥Wf − d∥22 + ∥Γd∥1

}
+ ιC(f)

}
.
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By identifying Wf , d , and ∥·∥1◦Γ as u, v, and φ, respectively,
in the definition of the Moreau envelope, model (9) is written
as

min
f

{
env∥·∥1◦Γ(Wf) + ιC(f)

}
. (11)

As reported in many research articles (e.g. [18], [22],
[33]), the DCT-Haar multiresolution analysis is suitable for
representing images rich in texture information. We would like
to demonstrate that the DCT-Haar multiresolution analysis is
also suitable for representing images rich in cartoon informa-
tion provided that the resulting coefficients of the underlying
image are properly modified and an appropriate nonlinear
reconstruction approach is used. To this end, we illustrate
this point by a numerical example portrayed in Figure 1. An
algorithm for model (11) will be developed in section III while
more examples will be provided in section IV. Figure 1(a) is an
original cartoon image while Figure 1(b) is the cartoon image
overlaid with text. The inpainted images shown in Figure 1(c)-
(f) with the peak signal-to-noise ratio (PSNR) values of
37.38dB, 37.37dB, 37.04dB and 39.96dB are, respectively,
from three competing algorithms, namely, spline framelets
(SF) based on [20], spline framelet and local DCT (SF-LDCT)
based on [28], and morphological component analysis (MCA)
based on [18], and our proposed algorithm. We can see that
the quality of the image in Figure 1(f) is better than those
images in Figure 1(c)-(e) in terms of visual perception.

In the rest of this section, we make a connection between
model (11) and the weighted ℓ1 minimization model for sparse
signal recovery in [30].

The problem discussed in [30] is to determine an object
x0 ∈ Rq from the data y = Φx0, where Φ is a n × q matrix
with n < q. Under the sparsity assumption on the x0 which
we wish to recover, it is common in compressive sensing to
solve the combinatorial optimization problem

min
x∈Rq

∥x∥0 subject to y = Φx, (12)

where ∥x∥0 is the number of non-zero elements of x. It is
well known that the optimization problem (12) is nonconvex
and generally impossible to solve. A common alternative is
to replace ∥x∥0 in problem (12) by ∥x∥1. As a result, it
converts the nonconvex optimization problem to a convex one.
The use of the ℓ1 norm in sparse signal recovery has been
well understood and justified (see, e.g., [34], [36] and the
references therein). Motivated by the observation that larger
coefficients are penalized more heavily in the ℓ1 norm than
smaller coefficients, unlike the more democratic penalization
of the ℓ0 norm, it was proposed in [30] to consider the
“weighted” ℓ1 optimization problem

min
x∈Rq

∥Tx∥1 subject to y = Φx, (13)

where T is the diagonal matrix with positive numbers
t[1], t[2], . . . , t[q] on the diagonal. In [30], a heuristic way was
suggested to solve the problem (13) as follows: (i) beginning
with the initialized weight matrix T (0) of all 1’s on its
diagonal; (ii) solving x(ℓ) = argminx∈Rq ∥T (ℓ)x∥1 subject to
y = Φx; (iii) updating the weights t(ℓ+1)[k] := (|x(ℓ)[k]| +
ϵ)−1 for k = 1, 2, . . . , q and a given positive number ϵ;

and (iv) terminating on convergence or ℓ attaining a specified
maximum number of iterations; otherwise incrementing ℓ and
going to step (ii).

Our proposed model (11) is in the sprit of (13), but with
several additional promising properties. Let us explain it now
in detail. Define x := Wf , y := PDg, and Φ := PDW

⊤,
where W is of size q × n. We consider a problem of seeking
a sparse set of coefficients x that synthesizes the signal f =
W⊤x as follows:

min
x

env∥·∥1◦Γ(x) subject to y = Φx, (14)

which is identical to problem (11) when W is an orthogonal
system. By the definition of the Moreau envelope, a direct
calculation gives, for a nonnegative number a,

enva|·|(u) =

{
a|u| − 1

2a
2, if |u| ≥ a;

1
2 |u|

2, otherwise. (15)

Since Γ is an n×n diagonal matrix with non-negative diagonal
elements, then the function ∥ · ∥1 ◦ Γ is separable. Hence
env∥·∥1◦Γ(x) =

∑q
k=1 envγ[k]|·|(x[k]). Further, by using for-

mula (15), we define a diagonal matrix T with diagonal
elements as

t[k] :=

{
γ[k]

(
2|x[k]|−γ[k]

2|x[k]|

)
, if |x[k]| ≥ γ[k];

1
2 |x[k]|, otherwise.

(16)

With this weight matrix T , we have that env∥·∥1◦Γ(x) =
∥Tx∥1. This is the reason why we call Γ the weight matrix
as well. By comparing the formulation (14) together with
(16) to that of (13), one can view (14) as a weighted ℓ1

minimization problem. The strategy in determining the weight
T is obviously different from the one given in [30]. In
Step (iii) of the aforementioned approach in [30], the weight
corresponding to an entry of a sparse signal is simply the
reversal of the sum of the magnitude of the entry and a small
positive number ϵ. The weight for an entry of a sparse signal
in (16) is determined by a pre-determined threshold, i.e., the
matrix Γ that will be estimated in an automatic way in the
next section. On the other hand, unlike the objective functional
in (13), the one in (14) is differentiable and its gradient is
Lipschitz continuous. This property is particularly important in
developing a fast and efficient numerical algorithm for solving
the optimization problem (14). Again, this will be illustrated
in the next section.

III. ALGORITHMS

In this section, we propose an iterative algorithm for solving
model (11) which involves a redundant system W generated
from the DCT and a weight matrix Γ. A variant of the
algorithm with a varying weight matrix Γ in iterations is
suggested.

A. Algorithm for Model (11)

This subsection presents a fast algorithm for solving
model (11). The cost function of the model is the sum of
the functions env∥·∥1◦Γ ◦ W and ιC . By the definition of
indicator function, ιC is not differentiable. We will show
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(a) (b) (c)

(d) (e) (f)
Fig. 1. Performance of various inpainting algorithms for a cartoon image with text. (a) the original test image; (b) the test image with text; inpainted images
by (c) SF (PSNR=37.38 dB); (d) SF-LDCT (PSNR=37.37 dB); (e) MCA (PSNR=37.04 dB); and (f) the proposed algorithm (PSNR=39.96 dB), respectively.

that env∥·∥1◦Γ ◦ W is differentiable and its gradient is Lip-
schitz continuous. Hence, Beck and Teboulle’s accelerated
proximal gradient (APG) algorithm [1] is suitable for solving
model (11).

The accelerated proximal gradient algorithm is developed
for a general nonsmooth convex optimization model

min
f

{ψ(f) + ϕ(f)}, (17)

where ϕ : Rn → R∪{+∞} is a convex function, ψ : Rn → R
is continuously differentiable with Lipschitz continuous gra-
dient L(ψ), i.e., ∥∇ψ(f1) − ∇ψ(f2)∥2 ≤ L(ψ)∥f1 − f2∥2
for every f1, f2 ∈ Rn. The corresponding APG algorithm
proposed in [1] is given in Algorithm 1.

Algorithm 1 (Accelerated proximal gradient (APG)):
1) set τ1 = 1, f0 = PDg + (Id − PD)X , where X is

a matrix whose entries are uniformly distributed on
the interval [0, 255];

2) Take u1 = f0 and L = L(ψ) as a Lipschitz constant
of ∇ψ;

3) For k = 1, 2, . . ., compute
a) fk = argminf{ϕ(f) + L

2 ∥f −(
uk − 1

L∇ψ(uk)
)
∥22}

b) τk+1 =
1+

√
1+4τ2

k

2

c) uk+1 = fk +
(

τk−1
τk+1

)
(fk − fk−1)

To apply APG Algorithm 1 for model (11), we need to
identify the corresponding functions ψ and ϕ in model (11). To
this end, we give some properties of the functions env∥·∥1◦Γ ◦
W and ιC in model (11).

Lemma 1: If Γ is a diagonal matrix with nonnegative diag-
onal entries and W is the tight framelet transform matrix given
in (8), then env∥·∥1◦Γ ◦W is continuously differentiable and
its gradient is Lipschitz continuous with the Lipschitz constant
1.

Proof: It is well-known that the Moreau envelope
of any function is always differentiable and the gradient of
the Moreau envelope is Lipschitz continuous with Lipschitz
constant 1 [32], [37]. Thus, the chain rule yields ∇(env∥·∥1◦Γ◦
W ) = W⊤∇env∥·∥1◦Γ ◦W . Therefore, for any f1 and f2 in
Rn, we have that

∥∇(env∥·∥1◦Γ ◦W )(f1)−∇(env∥·∥1◦Γ ◦W )(f2)∥2
≤ ∥W⊤∥2∥W∥2∥f1 − f2∥2.

Notice that ∥W⊤∥22 = ∥W∥22 = ∥W⊤W∥2 = 1 due to
W⊤W = Id. Hence, the Lipschitz constant of the gradient
∇(env∥·∥1◦Γ ◦W ) is 1. This completes the proof.

The following result explains how to compute ∇env∥·∥1◦Γ.
Lemma 2: If Γ is an n × n diagonal matrix with non-

negative diagonal entries, then the kth entry, k = 1, 2, . . . , n,
of the gradient of env∥·∥1◦Γ at f ∈ Rn is

∇env∥·∥1◦Γ(f)[k] =

{
γksign(f [k]), if |f [k]| ≥ γk;
f [k], otherwise,

where γk is the kth diagonal entry of Γ.
Proof: Since Γ is a diagonal matrix with non-

negative diagonal elements, then we have that env∥·∥1◦Γ(f) =∑n
k=1 env|γk·|(f [k]). Hence, the conclusion of the lemma

follows immediately from (15).
Lemma 3: If g, as shown in (1), is an image to be inpainted

on the domain D and the convex set C is given in (10), then
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for any α > 0 and f ∈ Rn we have that

PDg + (Id− PD)f = argmin
u

{α
2
∥u− f∥22 + ιC(u)

}
(18)

Proof: By the definition of the indicator function, we
know that

α

2
∥u− f∥22 + ιC(u) =

{
α
2 ∥u− f∥22, if u ∈ C;
+∞, otherwise.

Because PD(Id−PD) = 0, then ∥u−f∥22 = ∥PD(u−f)∥22+
∥(Id − PD)(u − f)∥22 ≥ ∥PD(g − f)∥22 for any u ∈ C. The
equality in the above holds when we choose u = PDg+(Id−
PD)f . This completes the proof.

With Lemmas 1 and 3, we identity the functions env∥·∥1◦Γ◦
W and ιC in model (11) as ψ and ϕ in model (17), respec-
tively. By using Lemma 1-3, an algorithm based on APG for
model (11) is proposed in Algorithm 2.

Algorithm 2 (Algorithm for Model (11)):
1) set τ1 = 1, f0 = PDg + (Id − PD)X , where X is

a matrix whose entries are uniformly distributed on
the interval [0, 255], and a pre-determined matrix Γ;

2) Take u1 = f0;
3) For k = 1, 2, . . ., compute

a) fk = PDg + (Id − PD)(uk −
W⊤∇env∥·∥1◦Γ(Wuk))

b) τk+1 =
1+

√
1+4τ2

k

2

c) uk+1 = fk +
(

τk−1
τk+1

)
(fk − fk−1)

Let {fk} be the sequence generated by Algorithm 2. Then all
elements in the sequence are in C. Let f⋆ be the point at which
the function env∥·∥1◦Γ(Wf)+ιC(f) in model (11) achieves its
minimal value. Then f⋆ must be in C as well. For Algorithm 2,
the rate of convergence of the sequence of function values
env∥·∥1◦Γ(Wfk) to the optimal value env∥·∥1◦Γ(Wf⋆) is
given as follows:

env∥·∥1◦Γ(Wfk)− env∥·∥1◦Γ(Wf⋆) ≤ 2∥fk − f⋆∥22
(k + 1)2

for all k ≥ 1. The proof of the above estimate is given in [1].
The remaining problem for Algorithm 2 is how to choose

the matrix Γ. We plan to use the procedure proposed in our
recent work [38] to automatically estimate Γ associated with
evaluating env∥·∥1◦Γ(Wu) for an input image u. To this end,
let us denote by v the Wu. For any non-negative integer p and
positive integer q, we denote by quot (p, q) and rem (p, q) the
quotient and the remainder, respectively, when p is divided by
q. For the ℓth entry of v, we can identify this entry by the
triplets (ℓ1, ℓ2, ℓ3) where ℓ1 = quot(quot(ℓ − 1, n),m) + 1,
ℓ2 = rem(quot(ℓ− 1, n),m)+1, and ℓ3 = rem(ℓ− 1, n)+1.
The pair of indexes (ℓ1, ℓ2) indicates that v[ℓ] the ℓth entry
of v is from the subband generated by Pℓ1 ⊗ Pℓ2 and the
index ℓ3 indicates that this entry v[ℓ] is the ℓ3th entry of the
vector Q(ℓ1−1)m+ℓ2u = (Pℓ1 ⊗ Pℓ2)u. With this notation, as
suggested in [38], γℓ the ℓth entry of Γ is estimated as follows:

γℓ =

{
0, if 1 ≤ ℓ ≤ n;√

2σ2
u

m2σv[ℓ]
, otherwise,

(19)

where σ2
u is the noise variance of the image u and σ2

v[ℓ] is
the variance of v[ℓ] with the assumption of v[ℓ] being Laplace
distributed. Here, σ2

v[ℓ] can be estimated by [39], [38]

σ2
v[ℓ] = max


 ∑
k∈R(v[ℓ])

√
2|v[k]|

|R(v[ℓ])|

2

− σ2
u, 10

−6

 ,

where the index set R(v[ℓ]) is the neighborhood of the
coefficient v[ℓ] in the corresponding (ℓ1, ℓ2) subband and
|R(v[ℓ])| is the cardinality of the set R(v[ℓ]). The window
R(v[ℓ]) of size (m+2)×(m+2) is adopted in our experiments.

Based on the formula (19), a variant of Algorithm 2 with
adaptive updating the matrix Γ in iterations, is described in
Algorithm 3.

Algorithm 3 (Adaptive Algorithm for Model (11)):
1) Set τ1 = 1, f0 = PDg + (Id − PD)X , where X is

a matrix whose entries are uniformly distributed on
the interval [0, 255], and a pre-given positive integer
s;

2) Take u1 = f0;
3) For k = 1, 2, . . ., compute

a) Estimate Γk from the input image uk′ based
on (19) with k′ = s · quot (k − 1, s) + 1

b) fk = PDg + (Id − PD)(uk −
W⊤∇env∥·∥1◦Γk

(Wuk))

c) τk+1 =
1+

√
1+4τ2

k

2

d) uk+1 = fk +
(

τk−1
τk+1

)
(fk − fk−1)

We remark that γℓ being zero for 1 ≤ ℓ ≤ n implies that
the scaling coefficients of Wuk (i.e., Q1uk) in Step 3(a) of
Algorithm 3 will be unmodified. Furthermore, the matrices Γk,
for s(q− 1) + 1 ≤ k ≤ sq with q being a natural number, are
identical and are essentially estimated from the us(q−1)+1 via
(19). In other words, the matrices Γk are updated only once
for every s iterations. In particular, if s = 1, the matrices Γk

will be updated at each iteration.

IV. EXPERIMENTS

In this section, we present numerical results to demonstrate
the performance of our proposed inpainting algorithm. We
shall compare results of the proposed algorithm to those of
three state-of-the-art methods in the literature.

In our numerical experiments, three test images are “Lena”,
“Cameraman”, and “Barbara” with a size of 256 × 256.
Three benchmark schemes are used in our experiments: Spline
Framelet based (SF) [20], Spline Framelet and Local DCT
based (SF-LDCT) [28], and Morphological Component Anal-
ysis based (MCA) [18]. The implementations of all three
algorithms are provided by their own authors. Our proposed
algorithm in the experiments is Algorithm 3 which is essen-
tially parameter-free. In the spirit of reproducible research,
the Matlab source codes of the proposed Algorithm 3 can
be obtained by sending an email to lshen03@syr.edu.
Each algorithm is carried out until the stopping condition



7

∥fk+1 − fk∥22/∥fk∥22 < 5 × 10−4 is satisfied. The quality of
the inpainted images is evaluated in terms of the peak signal-
to-noise ratio (PSNR) defined by

PSNR = 10 log10
2552n

∥frestored − forg∥2
(dB),

where frestored is the restored image with a total of n pixels.
This section contains three subsections. In the first two sub-

sections, the scenarios for text removal and random impulsive
noise removal will be discussed. The last subsection is about
the effect of choosing the DCT-Haar multiresolution analysis
of various dilations m.

A. Experimental Results on Text Removal

Removing texts superposed on images is a typical problem
in image inpainting. Two text documents named as “Text 1”
and “Text 2” are overlying on the test images shown in the first
row and the second row of Figure 2, respectively. The words
in the “Text 2” are thicker and denser than that in “Text 1”.
A set consisting the locations of the words in “Text 1” and
“Text 2” serves as the set D.

The first experiment tests numerically the choice of the
number s in Algorithm 3 in terms of the CPU time that the
algorithm consumed and the PSNR values of the inpainted
images for text removal. We observe from Table I that the
algorithm with s being 1 and 8 performs comparably in terms
of the PSNR values of the inpainted images, but the algorithm
with s = 8 uses much less the CPU time than that with s = 1.
Hence, in the rest of the paper, we always choose s = 8 for
Algorithm 3.

TABLE I
THE PAIR (·, ·) REPRESENTS THE PSNR VALUE OF THE INPAINTED

IMAGES AND THE CPU TIME (SECONDS) USED FOR TEXT REMOVAL BY
ALGORITHM 3 WITH THE PARAMETER s BEING 1 AND 8, RESPECTIVELY.

s “Lena” “Cameraman” “Barbara.” Case
1 (34.16, 203) (31.96, 213) (37.15, 162) “Text 1”
8 (33.95, 76) (31.96, 81) (36.98, 64)
1 (29.41, 446) (28.55, 368) (30.37, 438) “Text 2”
8 (29.31, 144) (28.60, 135) (30.12, 142)

As expected, for each algorithm, the inpainted image for an
image with “Text 1” should be better than that with the “Text
2” in terms of PSNR values. This can be clearly observed from
Table II. By comparing the performance of Algorithm 3 with
the other methods SF, SF-LDCT, and MCA, the PSNR values
listed in Table II indicate that Algorithm 3 is the best in terms
of PSNR values. We further point it out that the CPU times
consumed by both Algorithm 3 and the MCA are comparable
for all tested cases.

Let us have a closer look at the visual quality of the
inpainted images by various algorithms. When “Text 1” is
overlying on the test images, the zoomed-in portions of the
inpainted images are depicted in Figure 3. One can see that
Algorithm 3 can efficiently remove the superposed words over
the regions having both cartoon and texture components (see
Figure 3(R1-f)-(R3-f)). Those words are identifiable in the
inpainted images by the other three methods (see columns 3,
4, and 5 of Figure 3). We can draw the same conclusion for

the images having the “Text 2”. The corresponding results are
shown in Figure 4.

TABLE II
THE PAIR (·, ·) REPRESENTS THE PSNR VALUE OF AN INPAINTED IMAGE

AND THE CPU TIME (SECONDS) USED BY SF, SF-LDCT, MCA, AND
ALGORITHM 3 FOR TEXT REMOVAL.

Algorithms “Lena” “Cameraman” “Barbara.” Case
SF (32.12, 143) (30.29, 151) (32.81, 127)

SF-LDCT (31.73, 260) (30.58, 282) (35.22, 266) “Text 1”
MCA (32.48, 92) (30.63, 88) (35.37, 89)

Algorithm 3 (33.95, 76) (31.96, 81) (36.98, 64)
SF (28.36, 228) (26.78, 221) (27.79, 183)

SF-LDCT (28.10, 425) (26.83, 426) (29.27, 415) “Text 2”
MCA (28.20, 109) (26.47, 110) (29.25, 123)

Algorithm 3 (29.31, 144) (28.60, 135) (30.12, 142)

B. Experimental Results on Random Impulsive Noise Removal

The problem of removing random impulsive noise can be
viewed as one of image inpainting. We adopt the adaptive
median filter [40] to locate the pixels of images corrupted
by random impulsive noise. The detected locations form a
set D which is the region of an image to be inpainted
and therefore is assumed to be known in our experiments.
Three impulsive noise levels, namely 30%, 50%, and 70%,
are used to test robustness and efficiency of the proposed
algorithm. The experimental results with SF, SF-LDCT, MCA,
and Algorithm 3 are reported in Table III. As we can observe
from this table, the improvements made by Algorithm 3 over
the other three algorithms in terms of PSNR values are up to
5.31 dB, which is significant.

TABLE III
THE PAIR (·, ·) REPRESENTS THE PSNR VALUE OF THE INPAINTED

IMAGES AND THE CPU TIME (SECONDS) USED FOR BY SF, SF-LDCT,
MCA, AND ALGORITHM 3 FOR REMOVING RANDOM IMPULSIVE NOISE.

Algorithm “Lena” “Cameraman” “Barbara” Case
SF (28.44, 316) (25.45, 303) (26.13, 264)

SF-LDCT (27.69, 577) (25.23, 540) (28.37, 559) 70%
MCA (27.85, 92) (25.02, 91) (29.11, 92)

Algorithm 3 (28.72, 90) (26.13, 102) (30.35, 95)
SF (31.34, 205) (28.92, 198) (29.77, 185)

SF-LDCT (30.70, 372) (28.24, 356) (32.60, 320) 50%
MCA (31.09, 84) (28.37, 90) (32.67, 85)

Algorithm 3 (32.35, 62) (29.97, 74) (35.08, 57)
SF (34.96, 147) (32.50, 150) (34.49, 142)

SF-LDCT (34.01, 246) (31.55, 251) (37.30, 264) 30%
MCA (35.33, 106) (32.19, 106) (37.99, 108)

Algorithm 3 (36.50, 50) (33.60, 56) (39.33, 43)

The visual comparisons of the inpainted images by SF, SF-
LDCT, MCA, and Algorithm 3 are presented for the images of
“Lena”, “Cameraman”, and “Barbara” corrupted by impulsive
noise with noise level of 70%. Figure 5 shows the noisy
“Lena”, “Cameraman”, and “Barbara” images while Figure 6
presents the inpainted images using these four algorithms. It
can be observed that all the algorithms can inpaint the images
well, but Algorithm 3 is the best of them in terms of the
inpainted images (see the last column in Figure 6) having less
ringing artifacts than the ones by SF-LDCT and MCA (see
the second and third columns in Figure 6) and having a more
fruitful texture than the one by SF (see the first column in
Figure 6).
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(a) (b) (c)

(d) (e) (f)
Fig. 2. The test images superposed by “Text 1” (the first row) and the “Text 2” (the second row). The square region in each image is the part of the
corresponding image zoomed in.

(R1-a) (R1-b) (R1-c) (R1-d) (R1-e) (R1-f)

(R2-a) (R2-b) (R2-c) (R2-d) (R2-e) (R2-f)

(R3-a) (R3-b) (R3-c) (R3-d) (R3-e) (R3-f)
Fig. 3. Column 1: Zoomed-in portions of the original test images; Column 2: Zoomed-in portions of the original test images with “Text 1”; Columns 3-6
are inpainted images by using SF, SF-LDCT, MCA, and Algorithm 3, respectively.
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(R1-a) (R1-b) (R1-c) (R1-d) (R1-e) (R1-f)

(R2-a) (R2-b) (R2-c) (R2-d) (R2-e) (R2-f)

(R3-a) (R3-b) (R3-c) (R3-d) (R3-e) (R3-f)
Fig. 4. Column 1: Zoomed-in portions of the original test images; Column 2: Zoomed-in portions of the original test images with the “Text 2”; Columns
3-6 are inpainted images by using SF, SF-LDCT, MCA, and Algorithm 3, respectively.

Fig. 5. The images of “Lena”, “Cameraman”, and “Barbara” (from left to right) corrupted by impulsive noise with noise level of 70%.

For a further visual comparison, we present the results for
the zoomed-in portions of the images shown in Figure 6. These
results with our proposed algorithm together with other three
competing algorithms are provided in Figure 7. We can see that
our proposed algorithm retrieves fine structures of the original
images very well and yields the inpainted images with good
visual quality. The zoomed-in portion of the “Lena” image
(see, Figure 7(R1-e)) displays a part of Lena’s hair and a part
of her hat. The hair and edges of the hat in the inpainted
images in Figure 7(R1-a)-(R1-c), which are from SF, SF-
LDCT, and MCA, respectively, are blurry with some white
and black spots. In a contrast, the hair and edges of the hat
in Figure 7(R1-d) from Algorithm 3 are more focused. For
the image of “Cameraman”, the right ear of the Cameraman
(see Figure 7(R2-e)) is distinguishable in Figure 7(R2-d) by
Algorithm 3, but are not clear in the inpainted images in
Figure 7(R2-a)-(R2-c), which are from SF, SF-LDCT, and
MCA, respectively. The face of the Cameraman with Algo-
rithm 3 looks smoother than the ones with the other three
algorithms. The shapes of the camera in Figure 7(R2-b) and

(R2-d) are closer to the original shape in Figure 7(R2-e) than
the ones in Figure 7(R2-a) and (R2-c). The ‘Barbara’ image
having both texture and cartoon components is considered as
a good example in image inpainting. The head scarf of the
Barbara recovered by Algorithm 3 (see Figure 7(R3-d)) is
well preserved and visually looks the same as the original
one (see Figure 7(R3-e)). Noticeable artifacts are shown in the
inpainted images (Figure 7(R3-a)-(R3-c)) with SF, SF-LDCT,
and MCA.

C. Effects of The DCT-Haar Wavelets with Different Sizes

The reported performance of Algorithm 3 in the previous
two subsections is based on DCT-Haar wavelet from the 7×
7 DCT-II matrix. We would like to investigate the effect of
changing sizes of the DCT-II matrices on the performance
of Algorithm 3. To this end, Algorithm 3 with the DCT-Haar
transform matrix W from the DCT-II matrix sizes 5×5, 7×7,
9 × 9, and 11 × 11 is applied for inpainting the images in
the first row of Figure 2. The corresponding PSNR values of
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Fig. 6. The inpainted images for the images of “Lena”, “Cameraman”, and “Barbara” (from top to bottom) corrupted by impulsive noise with noise level
of 70%. The results (from left to right) are produced by SF, SF-LDCT, MCA, and Algorithm 3, respectively.

the inpainted images are listed in Table IV. It can be seen
that the larger the size of the DCT-II matrix, the higher the
PSNR value of the inpainted image. The inpainted images are
visually similar and therefore will not be shown here. To avoid
compromising the performance and computational complexity
of Algorithm 3, the DCT-II matrix size 7 × 7 is a suitable
choice.

TABLE IV
THE PAIR (·, ·) REPRESENTS THE PSNR VALUE OF AN INPAINTED IMAGE

AND THE CPU TIME (SECONDS) BY ALGORITHM 3 WITH DIFFERENT SIZES
OF THE DCT-HAAR SYSTEMS FOR THE TEST IMAGES WITH “TEXT 1”.

DCT5 DCT7 DCT9 DCT11 Image
(33.42, 29) (33.95, 76) (34.19, 169) (34.35, 364) “Lena”
(31.35, 32) (31.96, 81) (32.29, 181) (32.41, 373) “Cameraman”
(35.36, 26) (36.98, 64) (37.59, 153) (37.96, 314) “Barbara”

V. CONCLUSIONS

In this paper, we proposed an image inpainting model which
was formulated using the smoothed and weighted ℓ1 norm of
the coefficients of the underlying image and the redundant
systems generated by the DCT-Haar multiresolution analysis.
We developed an algorithm based on Beck-Teboulle’s method.
The weight matrix in the proposed algorithm was updated
based on the local statistics of the coefficients of the solution

at each iteration. The algorithm outperforms the three state-
of-the-art alternatives for various examples in terms of both
PSNR values and visual quality of the experimental results. We
claimed that the redundant system generated by the DCT-Haar
multiresolution analysis and the resulting inpainting model
are particularly suitable for inpainting problems including
impulsive noise removal and filling missing information over
regions with moderate sizes.
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(R1-a) (R1-b) (R1-c) (R1-d) (R1-e)

(R2-a) (R2-b) (R2-c) (R2-d) (R2-e)

(R3-a) (R3-b) (R3-c) (R3-d) (R3-e)
Fig. 7. The results for the zoomed-in portions of the noisy images shown in Figure 6. The first four columns are the inpainted images for the zoomed-in
portions by SF, SF-LDCT, MCA, Algorithm 3, respectively. The last column shows the original portions of the images.
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